Pollination induces autophagy in petunia petals via ethylene
نویسندگان
چکیده
Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.
منابع مشابه
Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers
The flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids,...
متن کاملEthylene-regulated floral volatile synthesis in petunia corollas.
In many flowering plants, such as petunia (Petunia x hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile or...
متن کاملIncreases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias.
The programmed senescence of flower petals has been shown to involve the fragmentation of nuclear DNA. Nuclear DNA fragmentation, as determined by the TUNEL assay, was detected in Petunia x hybrida corollas during both pollination-induced and age-related senescence. DNA fragmentation was detected late in the lifespan of the flower when corollas were wilting and producing ethylene. The induction...
متن کاملEffects of Previous Pollination and Stylar Ethylene on Pollen Tube Growth in Petunia hybrida Styles.
The effect of ethylene on the growth rate of pollen tubes in styles of Petunia hybrida was examined. Apart from its strong inhibition of pollination-induced ethylene synthesis, aminoethoxyvinylglycine, placed on the stigma, did not impede tube growth. The inhibitors of the action of ethylene, silver thiosulfate and 2,5-norbornadiene, were similarly ineffective. Application of the ethylene precu...
متن کاملRegulation of methylbenzoate emission after pollination in snapdragon and petunia flowers.
The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after poll...
متن کامل